Development of Synchronization Theory

نویسنده

  • Leonid Shilnikov
چکیده

These two problems remain fundamental in the classic theory of synchronization: the first one is on the behavior of oscillatory systems driven by a periodical force. The second focuses on the interaction between two coupled oscillatory systems. Both cases give a plethora of dynamical phenomena that exist at different values of control parameters which can either the amplitude and the frequency of the external force, or the coupling strength, respectively. In terms of the theory of dynamical systems, the problem in question sounds as follows: find a synchronization region in the parameter space that corresponds to the existence of a stable periodic orbit, and describe the ways synchronization is lost after crossing the its boundaries. Let an autonomous system

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

GENERAL SYNCHRONIZATION OF COUPLED PAIR OF CHAOTIC ONE-DIMENSIONAL GAUSSIAN MAPS

In this paper we review some recent ideas of synchronization theory. We apply this theory to study the different synchronization aspects of uni-directionally coupled pair of chaotic one-dimensional Gaussian maps.

متن کامل

Fuzzy Modeling and Synchronization of a New Hyperchaotic Complex System with Uncertainties

In this paper, the synchronization of a new hyperchaotic complex system based on T-S fuzzy model is proposed. First, the considered hyperchaotic system is represented by T-S fuzzy model equivalently. Then, by using the parallel distributed compensation (PDC) method and by applying linear system theory and exact linearization (EL) technique, a fuzzy controller is designed to realize the synchron...

متن کامل

Synchronization criteria for T-S fuzzy singular complex dynamical networks with Markovian jumping parameters and mixed time-varying delays using pinning control

In this paper, we are discuss about the issue of synchronization for singular complex dynamical networks with Markovian jumping parameters and additive time-varying delays through pinning control by Takagi-Sugeno (T-S) fuzzy theory.The complex dynamical systems consist of m nodes and the systems switch from one mode to another, a Markovian chain with glorious transition probabili...

متن کامل

Hybrid Control to Approach Chaos Synchronization of Uncertain DUFFING Oscillator Systems with External Disturbance

This paper proposes a hybrid control scheme for the synchronization of two chaotic Duffing oscillator system, subject to uncertainties and external disturbances. The novelty of this scheme is that the Linear Quadratic Regulation (LQR) control, Sliding Mode (SM) control and Gaussian Radial basis Function Neural Network (GRBFNN) control are combined to chaos synchronization with respect to extern...

متن کامل

Global Finite Time Synchronization of Two Nonlinear Chaotic Gyros Using High Order Sliding Mode Control

In this paper, under the existence of system uncertainties, external disturbances, and input nonlinearity, global finite time synchronization between two identical attractors which belong to a class of second-order chaotic nonlinear gyros are achieved by considering a method of continuous smooth second-order sliding mode control (HOAMSC). It is proved that the proposed controller is robust to m...

متن کامل

Chaotic dynamics and synchronization of fractional order PMSM ‎system

‎In this paper, we investigate the chaotic behaviors of the fractional-order permanent magnet synchronous motor (PMSM) system. The necessary condition for the existence of chaos in the fractional-order PMSM system is deduced and an active controller is developed based on the stability theory for fractional systems. The presented control scheme  is simple and flexible, and it is suitable both fo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004